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Abstract. The quantum deformarion algebra SOq(2, I )  is studied md applied 10 derive the 
q-analogues of the ladder and shift Operators for the radial Coulomb, radial harmonic oscillator 
and Morse oscillator potenlials. The q-deformed operators in all three cases are found to acl like 
shift opentors, &led ?shift opentors. Their possible similarity with the quasi-shifl operators 
arising in supersymmetric quantum mechanics, or factorization, of the radial harmonic oscillator 
is also Doinled out. 

1. Introduction 

Recently, Cooper [ l ]  used algebraic methods to obtain the transition operators for three 
exactly solvable potentials, namely the radial Coulomb, radial harmonic oscillator and 
Morse oscillator potentials. It is shown that each system obeys the SO(2, 1) algebra$ 
and the resultant transition operators act as ladder (or energy changing at constant angular 
momentum) operators in the cases of the radial Coulomb and radial harmonic oscillator 
potentials, whereas they act as shift (constant energy at different well depths) operators 
in the case of the Morse potential. The mappings between each pair of potentials .are 
also exactly identified. The transition operators, more commonly known as the raising or 
lowering operators of the energy states, are of value in the analytical determination of the 
eigenvalues corresponding to exactly determined eigenstates. In this paper, we introduce 
the q-analogues of these transition operators in the hope of learning some new fine-structure 
physics, such as spectrum splitting and shift [Z]. 

Quantum groups (or q-deformation, in short) constitute a recently introduced 
mathematical tool for nuclei, molecules and many other physical systems obeying statistical 
mechanics, conformal field theory, field theory of strings, etc. The puzzling question so 
far has been the absence of a universal single meaning associated with the deformation 
parameter q which characterizes the quantum nature of the group. To begin with, this 
parameter was considered to play a role equivalent to that of the Planck constant and, 
hence, the name ‘quantum’ group. However, recent work by Gupta et al [3] has shown that 
q-deformation of the Planck distribution leads from ideal black-body radiation to that of a 
non-ideal real body. In terms of the interacting boson model of nuclei, q is related to the 
softness parameter [4] of the variable moment-of-inertia model, as well as to the mixing of 
the dynamical symmetries [5-71 of the one-dimensional U ( 2 ) ,  two-dimensional SU(3) and 
three-dimensional U ( 6 )  groups. Gupta [6] and Gupta and collaborators [5,7] have shown 

t Permanent address: UGC National Fellow, Physics Department, Panjab University. Chandigarh-160014, India. 
$ We use the same notation for algebra and groups. 
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that for complex values of the q-deformation parameter, a complete (analytical) description 
of the underlying group (U(Z) ,  SU(3) or U(6)) can be obtained by q-deforming only one of 
its limiting symmetries. This is referred to as q-breaking of dynamical symmetry [6]. The 
pure imaginary values of q-deformation are found [6,8] to restore the dynamical symmetry. 
For molecules, not only have the one-dimensional SUq(2) and SUq(l, 1) symmetries been 
studied [9-111 for both rotational and vibrational spectra, but also the 0,(4) limit of the 
three-dimensional U(4) group [12]. The q-deformation parameter is shown to be related 
to the expansion coefficients of the empirical Dunham expansion. However, in view of 
the detailed work of Kim et a1 [I31 on the mixing of classical (un-defomed) dynamical 
symmetries of U(4), it seems [14] that the q-deformation parameter in U(4) would also 
play the role of a symmetry mixing parameter, like that in U ( 6 )  of nuclei [7]. One can thus 
elucidate the different roles of the q-deformation parameter in various different problems. 
This makes the study of the q-analogue of any physical problem in itself interesting, as well 
as important. 

For the Coulomb potential, the q-analogue of the hydrogen atom energy spectrum 
is obtained in terms of the SOq(4) - SUq(2) @ SU& algebra [2, 15,161. Also, the 
deformation of a four-dimensional oscillator is studied which arises in the application of 
the Kustaanheimo-Stiefel transformation (21. The role of q-deformation in reproducing the 
2s-2p Dirac splitting is indicated, which provides a model of the 2 s - 2 ~  splitting without 
invoking relativistic quantum mechanics. In this paper, we study the radial Coulomb 
potential, as well as the other two exactly solvable potentials, which correspond to different 
realizations of the SO(2, 1) group [17]. The transition operators of the SO(2. 1) group are 
found to satisfy SU(1, 1) algebra [l], whose q-deformation is well known [18,19]. This 
allows us to construct the SO,(Z,l) algebra and, hence, the q-deformed ladder and shift 
operators for the three potentials considered here. 

This paper is organized as follows. In section 2, we give the SO(2, 1) realizations of 
the three potentials. The relevent ladder and shift operators are obtained in section 3 by 
invoking the transformation of SO(2, 1) to SU(1, 1). Section 4 deals with the bosonization 
procedure and the establishing of SOq(2, 1). The q-deformed ladder and shift operators 
are obtained in section 5. Finally, a summary and discussion of our results is added as 
section 6. 

R J Gupta and I L Cooper 

2. SO(2,l)  realizations of the radial Coulomb, radial harmonic oscillator and Morse 
oscillator potentials 

The Schrodinger equations for the three exactly solvable potentials are expressible in 
dimensionless form as [ l ]  

In equation (l), n U + I + 1 is the principal quantum number, with U representing the 
number of radial nodes and, in equations (2) and (3), U represents the vibrational quantum 
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number. Also, 1 is the rotational angular momentum quantum number in equations (I)  and 
(2) and, in equation (3), h represents the well-depth parameter of the Morse potential which 
is allowed to vary only by integer amounts. 

Each of these equations can be expressed in terms of three operators Wj(i = 1,2,3), 
which satisfy a single common commutation relation 

[WI,  W3l = 2iU5 (4) 

where the explicit forms of W: are given by 

WCOul- - P  

for the radial Coulomb potential. 

WF" = ; [-dl? d2 + 4 [ ( I +  1) 

for the radial harmonic oscillator potential, and 

WlMorsc = e-x 

w p = - *  dZ 
dx2 

e - + (A - U - ;)e" 

for the one-dimensional Morse potential. 
Then, a new set of operators Tj(i = 1 , 2 , 3 )  defined as 

TI = ;(w3 - W,) 

T3 = $QV3 + W , )  

Tz = Wl 

satisfy the commutation relations 

[TI.  Tz] = -iT, 

[Tz, T31 = iT1 

[T3. TI] = iT2 
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which characterize the SO(2. 1) algebra [171. The interesting point to note here is that the 
defining relations (8)  of generators T,, Tz, and E of SO(2. I )  algebra are the same for all 
three potentials. This means that all three potentials can be treated on an equal footing and 
a unified approach is possible. 

R J Gupta and I L Cooper 

The second-order Casimir operator of SO(2,l) is given by 

Cz(SO(2. 1)) = T: - T: - T; 
= ~3 W] - W: = W I  W, - Wz(2i + w,) (10) 

which is different for different potentials. Substituting for W'l from equations (S)47) ,  we 
get, for the three potentials, the eigenvalue equations 

cy'*y = 1(f+ l ) * Y  (1la) 

c* *"J 4(w + 1) - ;)*:y 
&Mn'"+$n' = (A - u)(A - U - l)@2lme = (-Eu - ~ ) @ ~ ~ w .  

(1 Ib) 

( l l c )  

Thus, the irreducible representations for both the radial Coulomb and radial harmonic 
oscillator potentials are characterized by the angular momemtum quantum number I ,  whereas 
that of the Morse potential refers to constant energy E, .  

Also, the operator T3 = ($(W3 + W,)), which corresponds to the Casimir of the 
subalgebra SO(2) of SO(2, 1). yields an eigenvalue equation for each potential: 

H m  Harm = 

T3M0*= *",A = A * Y .  (12c) 

It is interesting to note that for both the Coulomb and harmonic oscillator potentials, 
the operator T3 determines the energy (since n in the Coulomb potential is the principal 
quantum number, it determines the energy), whereas for the Morse potential it represents 
the well-depth parameter A. We shall see in the following section that this difference in 
the behaviour of the T3 operators has an important consequence for the nature of transition 
operators for the radial Coulomb and radial harmonic oscillator potentials and that of the 
Morse potential. In the former two cases, we obtain ladder operators, whereas in the later 
case, we obtain shift operators. 

3. The classical ladderkhift operators 

The transition operators are constructed as follows: 

Ti = TI & iT2 = i(W3 - W,) f ilV2 

T3 = T3 = $(W3 + W,) 
( 1 3 4  

(1%) 

whose explicit forms for the three potentials can be obtained by substitution of 1% from 
equations ( 3 4 7 ) .  The Casimir operator (IO) then takes the form 

Cz(SO(2, 1)) = T3(T3 - 1) - T+T- = T3(T3 + 1) - T-T+ (14) 
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and the operators satisfy the SU(1, 1) algebra 

[T?, Til = *T+ ( 1 5 4  

[T+, T-] = -2T3. ( 15b) 

Hence, C2(SO(Z, I)) Cz(SCl(1, I)). 
Assuming that the transition operators T+ also act on the eigenstates @",! or t/lli.h, Cooper 

[l] has shown that Ti behave as ladder operators for the Coulomb and harmonic oscillator 
problems and as shift operators in the case of the Morse oscillator. This is sketched below 
very briefly. 

Using (150) and (12), it is straightforward to show that 

T3(Ti@$"9 = (n iz l ) (T i@F ' )  

T d T * * y 7  = (U + ; l +  t i I)(Tit;f") 

T3(T*@:rs) = (1 iz I)(Ti@.C",O'Se). 

( 1 6 4  

( 166) 

(164 

(174 

(17b) 

( 1 7 ~ )  

Then, repeated use of (12) gives 
cod c( *CO"l - T*P",l " i l . 1  - kO"i*%!I  

H3rm a @H" - kHor @H"" 
4 * " . 1  U + I J -  m u+i,i  

T i P Y Y  a @z?Li = k~orsa@e~ ,A*i .  
MmSe 

Notice that in the case of the Morse potential, the constant-energy condition demands 

The constant of proportionality k in each case follows from (15b) and (14), which allows 
that (A - U) remains constant, since E, = -(A - U - 4)'. 
us to write 

T+TF = T3V3 i 1 )  - Cz(S0(2,1)). (18) 

Then, for each potential, using ( 1  1) and (12) 

T+T~@:~' = {n(n T 1) - w + 1)1+$"~  

T*TT@:Fm 

( 1 9 4  

(19b) 

(19c) 

Choosing a phase factor of unity, equation (19) gives the constant of proportionality k 
in equation (17) as the square root of the curly bracket above, i.e. k = (. . .]'Iz for each 
case. Hence, we get the transition operators 

((U + f l +  :)(U + ; I +  f 7 1) - f ( l ( l +  I )  - 

T*TF@Yfne = [A(A 7 1)  - (A - ~ ) ( h  - U - 

(2% 

@"+I,, (20b) 

(ZOC) 

Apparently, these transition operators represent ladder operators, i.e. the energy changing 
operators at constant angular momentum for the radial Coulomb and radial harmonic 
oscillator potentials, and as shift operators, i.e. changing the well-depth parameter but 
keeping the energy constant, for the Morse potential. Notice that in each case T-@,,I(~~ A )  = 
0, which defines the ground state of the system. 

1/2 COUl T * P y  = w* 1) - l@+ 1 ) f  @"*I.{ 

3 112 Houm T*$:T = ~ { ( Z U  + 1 + ;)(ZU + 1 + f 2) - [ ( I  + 1) + a1 
1/2 Morse [.'-(A * 1) - (A - u ) ( A  - U - 1)) P,*~.A*I. 
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4. The bosonization procedure and the SO& 1) group 

For the classical SO(2, 1) group, we have seen that Its generators Ti. Tz, T3 satisfy 
commutation relations (9) and transformations (13) lead to the SU(I, 1) algebra (15). 
The bosonic representation of SU(I, 1) in terms of two boson creation (a!, ai)  and two 
annihilation (al, az) operators can be defined as [20] 

R J Gupta and 1 L Cooper 

where a!, ai (i = 1 , 2 )  satisfy the standard boson commutation :ules. Then, for the 
representation ]Nu), the eigenvalue of the Casimir operator (IO) or (14) of SO(2, 1) is [21] 

(22) 

Here, N (= N I  +N?) is the total number of bosons and w is related [21] to the vibrational 

Cz(SO(2, 1))INw) = ~ W ( W  + 2) INo) .  

quantum number U: 

U = f ( N  - W )  (23) 

with w = N ,  N - 2 , .  . . , 1 or 0 ( N  = odd or even). Also, N is related to the maximum 
number of vibrational states: 

N = 2umm or 2um, + 1 ( N  =even or odd integer). (24) 

For the q-deformation, using the same bosonic representation (21), but with 

aiai f - qafai = q-" or a;af - q-'a!ai = 4" 

[ N i , a f ] = a t  (25) 

[N; ,  a;] = -ai 

the commutation relations for SU,(l, 1) become [IS. 191 

The first commutator in (26) can also be deformed, but this has been worked out so far 
only for the SUq(2) group [22]. Here. we have introduced a square bracket defined as 

where s is real (=a) ,  imaginary (= ib) or, in general, complex (= a + ib). Notice that for 
q --f 1 (or s -3 O), [ x ]  -3 x .  
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The Fock space {In),,], n = 0 , 1 , 2 , .  . ~, for each oscillator is constructed as 

aIO), = 0 

[nl!  = [nl[n - 11. . ,111. 

Also, 

a+In),, = &T% + I),, 
uta = [NI 

urn),, = d E l n  - 1)4 
(286) 

aut = [ N  + 11 Nln) ,  = nIn)q. 
Then, for two oscillators, letting n1 = K and nz = p, the irreducible representation, 

built from (28). is the tensor product 

(29) 
1 (sly (& lo),,. v" IKLL),, = lhly @ Is),, = 

Operating with T3 and T' on equation (29), we obtain 

T3IKLL)q = PlKLL)q 
(30) 

T+IK& = d [ P  ?z K l b  F K * 111KLL f 

with 

p = + nz + 1) ( 3 1 4  

K = $ ( I +  In1 -mi) 

and 

(31b) 

where for any positive real number K ,  p = K.  K + 1, K + 2 , .  . . . 
The second-order Casimir operator of SU,,(l, 1) is [191 

c2(sU,,(l, 1)) = [T3][T3 - 11 - T+T- = [T3][T3 4- 11 - T-T+ 

CZ(sUq(1, 1))IKP)q [ K I [ K  - 1IkP)q.  (33) 

In] - nzl = w + 1 = 2~ - 1 (34) 

(32) 

whose eigenvalues for the above chosen representation are 

Introducing the vibrational quantum number w, defined as 11 11 

one obtains 

We notice here that in the limit q + 1 (or s + O), equation (35) reduces to equation (22), 
the Casimir of SO(2, 1). Also, we have seen that Cz(SO(2, 1)) CZ(SU(1, 1)). Based on 
this result, which has been used previously in [12,23], we find that the Casimirs of SU,,(l, 1) 
and SO,,(2, 1) are also the same, given by equation (32). Explicitly, 

Cz(sOq(2, I ) ) (= Cz(sUq(1, 1))) = [T3I[T3 - 11 - T+T- = [?-3][T3 4- 11 - T-T+. (36) 
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5. q-deformed ladderlshift operators 

For the q-deformation, the second commutator in (26), combined with equation (36), gives 

R J Gupta and I L Cooper 

TiTF =[T3I[T~+11T~2T31-cZ(soq(2,1)) (37) 

which, as in the classical case, has different eigenvalues for different potentials. Using the 
q-analogues of (1 I )  and (12) in accordance with how (22) q-deforms to (35) and assuming 
that (37) act on the q-bosonic state I K ~ ) ~  = $ q ,  we get for each potential 

(3 8 4  
q CO"] 

T*T,$,4$"1= ([nl[n f 11 7 [2nl - [UV+ IIW",; 

TiT,$;pm = {[U + ;I + f l [ u +  f l  + $ f 11 T [2u + l +  91 - [ ; I  - ;lr$ f 3 ZIl$",, y.Harm 
(38b) 

(384 q.Mone - q Morse 
, T ~ T T $ ~ , A  - {[Al[A f 11 F [211- [A - U I D  - U - lIl$u;~ 

Following the same phase convention as in the classical case, 

( 3 9 4  

Ti$:;? - { [ U + f l + ~ I [ U + f l + $ i 1 l i [ 2 u + l + ~ I - r ~ l  - - i l [ + l + { I l  112 q , b m  

(39b) 

(39c) 

112 '7COUl 
T * P : ; ~  = {[nl[n T 11 * I ~ I  - [W + 111 $nil,, 

112 q.Mone T+.$:;yse = {[Al[h i 11 f P A 1  - [A - - - 11) $ v * l , A * l .  

These are the q-deformed ladder and shift operators, respectively, for the radial 
Coulomb and radial harmonic oscillator potentials and the Morse potential (see, however, 
the discussion in the next section). For the ground state to be defined as in the classical 
case, we must also have 

'-@&(or A) = O. (40) 

This condition is satisfied for all three problems since, from equation (27), we have the 
identity 

[ x ] [ x  + 11 - [2x] - [x][x - 11 = 0 (41) 

for any arbitrary (real, imaginary or complex) value of q. Hence, equations (39) may be 
rewritten i n  the form 

(4W I/Z YC0"l T * $ y  = b l [ n  i 11 - + 111 $"if,, 

(424 T*$::F"* - - {[U + ; I  + f l r u  -t $1 + $ T I1 - [+I  - :lr$ + TI1  3 1/2 $"*,,! q.Hum 

explicitly demonstrating a one-to-one correspondence with classical operators (20) in the 
limit q + 1, [ x ]  -+ x .  
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6. Summary and  discussion of results 

We have derived the quantum-deformed versions of the ladder and shift operators for three 
exactly solvable potentials: the radial Coulomb, radial harmonic oscillator and Morse 
oscillator potentials. Since the problems associated with these potentials correspond to 
different realizations of the SO(2, 1) algebra, the quantum-deformed algebra of SO(2, I ) ,  
namely SO,(2, I ) ,  is established first. It is shown that the second-order Casimir operator of 
SO, (2, 1) is the same as that of SUq (1, 1). 

Knowing that q-deformation involves sinh, sin or both sinh, sin and their cosine 
functions, the q-deformed operators have eigenvalues in  far more complicated forms 
than their classical counterparts. Also, the quantum deformation parameter q varies 
continuously. This means that even for ladder operators with constant angular momentum 
1, the contribution of 1 to the energy shift could be varied by varying parameter q ,  Also, 
due to the sine function, there will be some degeneracies of states where the role of q on 
(constant) 1-dependent terms will be important. In other words, the fine-structure effects are 
built into the q-formalism and the ladder operators for the Coulomb and harmonic oscillator 
potentials also seem to behave very much like shift operators, but due to changing q. Since 
the q-deformed shift operators for the Morse potential also depend on q ,  we refer to the 
q-deformed transition operators as q-shift operators. In this connection, it may be relevent 
to mention that an alternative algebraic approach of supersymmetric quantum mechanics 
[I] ,  or the factorization method, also results in a set of shift operators only, for all three 
potentials studied here. For the radial harmonic oscillator problem, the shift operators act 
to change not only the 1 quantum number but also the energy. These are referred to as 
the quasi-shift operators [ I ] .  Our q-shift operators for the quantum-deformation algebraic 
treatment of the three problems resemble the quasi-shift operators of the supersymmetric 
quantum mechanical treatment of the radial harmonic oscillator problem. Hence, a mapping 
between the two approaches may be possible. 
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